AD-A202 442 ORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 1b. RESTRICTIVE MARKINGS UNCLASSIFIED 3. DISTRIBUTION/AVAILABILITY OF REPORT 2a. SECURITY CLASSIFICATION AUT Approved for public release; 2b. DECLASSIFICATION / DOWNGRAD Distribution Unlimited. 4. PERFORMING ORGANIZATION RE S. MONITORING ORGANIZATION REPORT NUMBER(S) UMBER(S) AFATL-TR-88-147 7a. NAME OF MONITORING ORGANIZATION 6b. OFFICE SYMBOL 6a. NAME OF PERFORMING ORGANIZATION (If applica AFATL/FXG Aeromechanics Division 6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) Air Force Armament Laboratory Eglin AFB, FL 32542-5434 8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT/INSTRUMENT IDENTIFICATION NUMBER **ORGANIZATION** (If applicable) F08635-25-C-0095 F08635-86-C-0393 AFATL/FXG Aeromechanics Division (over) 10. SOURCE OF FUNDING NUMBERS 8c. ADDRESS (City, State, and ZIP Code) PROGRAM Air Force Armament Laboratory PROJECT WORK UNIT ACCESSION NO. NO. ELEMENT NO. Eglin AFB. FL 32542-5434 2567 01 64740F 2567 01 11. TITLE (Include Security Classification) Diagnosing Munition Faults: The EMMA Approach 12. PERSONAL AUTHOR(S) Mullins, Barry Eugene 13a. TYPE OF REPORT 14. DATE OF REPORT (Year, Month, Day) 13b. TIME COVERED 15. PAGE COUNT FROM Sep 86 to Oct 88 Technical Paper October 1988 8 16. SUPPLEMENTARY NOTATION 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Complete did diagnosis, Repuirits

Artificial Intelligence, Miantenance and Diagnostics COSATI CODES FIELD GROUP SUB-GROUP Integrated Diagnostics 1725 Expert Systems/ . ABSTRACT (Continue on reverse if necessary and identify by block number) The Expert Missile Maintenance Aid (EMMA) program is discussed in this paper. The paper addresses such issues as how the field-level expert system prototypes were structured and evaluated as well as the excellent results of the evaluations. It was found that the use of expert systems is very amenable and beneficial to diagnosing munition faults in the field. Current work on the depot-level prototypes is discussed as well as issues related to using DOD-STD-2167 to document the development of expert systems. When properly tailored DOD-STD-2167 can be an effective means of documenting and monitoring the work performed in developing an export system. The paper concludes with a discussion of future plans for a follow-on program and other areas of concern-

BARRY E. MULLINS, Capt, USAF

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

22a. NAME OF RESPONSIBLE INDIVIDUAL

DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

22b. TELEPHONE (Include Area Code) | 22c. OFFICE SYMBOL

UNCLASSIFIED

(904) 882-2961

8a. NAME OF FUNDING/SPONSORING ORGANIZATION (CONCLUDED)
Electronic Systems Division

8b. OFFICE SYMBOL (CONCLUDED)

ESD/XRS

8c. ADDRESS (CONCLUDED)

Hanscom AFB, MA 01731-5003

Accesion For	
NTIS CRASI	N
DTIC TAB	Ē
Uparanounced - Justice drops	<u></u>
Sv	
Ularrican in	
As Grande C	odes
Disa Comment	
A-1	

DIAGNOSING MUNITION FAULTS: THE EMMA APPROACH

Barry E. Mullins, Capt, USAF Air Force Armament Laboratory (AFATL/FXG) Eglin Air Force Base, Florida 32542-5434

ABSTRACT

The Expert Missile Maintenance Aid (EMMA) program is discussed in this paper. The paper addresses such issues as how the field-level expert system prototypes were structured and evaluated as well as the excellent results of the evaluations. It was found that the use of expert systems is very amenable and beneficial to diagnosing munition faults in the field. Current work on the depot-level prototypes is discussed as well as issues related to using DOD-STD-2167 to document the development of expert systems. When properly tailored, DOD-STD-2167 can be an effective means of documenting and monitoring the work performed in developing an expert system. The paper concludes with a discussion of future plans for a follow-on program and other areas of concern.

INTRODUCTION

Weapon systems of today are undoubtedly benefiting from technology advances and justifiably so. Munitions are becoming more sophisticated, sutonomous, and "smarter" as a result of this technology. Electronically sophisticated munitions are quickly infiltrating the Department of Defense arsenal of weapons in order to combat the ever-increasing number of sophisticated weapon systems of our adversaries. Simple bombs are becoming relics of yesteryear with technology pushing our weapons towards autonomy.

However, some shortcomings can be associated with incorporating new technology into current and future weapon Munition maintenance will suffer as a consequence of this technology. technology advances that have improved the effectiveness of munitions are simultaneously complicating the maintenance of these munitions by increasing the functionality of the munition typically at the expense of the munition's maintainability. Munition test equipment and associated test software do not adequately diagnose faults. Automatic test equipment (ATE) is plagued by high false alarm rates. Guidance and control sections returned to the depot are currently experiencing approximately 28 to 44 percent retest OKs. Many faults, as many as one out of every four (i.e., 25 percent), cannot be detected by ATE. Sequential

testing (i.e., sequentially applying a series of predetermined tests to the faulty munition regardless of a priori knowledge of the munition) is typically how ATE performs diagnostic testing. This limits the diagnostic capabilities of the test equipment. Additionally, current munition ATE cannot diagnose beyond multiple linked components.

Another aspect of munition maintenance that must be addressed when dealing with munition reliability is the personnel shortage. The current shortage of skilled munition maintenance technicians is a serious problem. Demographic projections indicate that this dilemma will not subside in the near future. Since experienced technicians are able to diagnose a fault quicker and more reliably than a novice, the knowledge acquired by the experienced technician (expert) throughout the years should be captured so that this knowledge can be used by novice technicians during future diagnostic sessions.

Artificial intelligence (AI) technology is one approach to increasing the reliability and maintainability of existing and future weapon systems. popular and heavily cited definition of artificial intelligence is provided by Dr. Rlaine Rich, University of Texas at Austin. She defines Al as follows: "Artificial intelligence is the study of how computers do things at which, at the moment, people are better" (Rich, 1983:1). A subset of AI is a field called expert systems. This area of AI has emerged recently with the greatest amount of success (Hayes-Roth et al., 1983:xi). Donald Waterman defines expert systems as "sophisticated computer programs that manipulate knowledge to solve problems efficiently and effectively in a narrow problem area" (Waterman, 1986:xvii). Tactical munition maintenance is one such area where a narrow problem area can be defined where a computer could potentially perform better than a human.

EMPLA

EMMA is a research effort sponsored by the Air Force Armament Laboratory, Air Force Systems Command at Eglin Air Force Base (AFB), Florida. It is a first attempt to enhance maintenance of a tactical munition at the field and depot level by using AI techniques. The ultimate goal of EMMA is to assist a novice munition maintenance technician isolate and diagnose electronic, electromechanical, and mechanical equipment faults of a single munition to the board /chassis/component level more quickly and consistently than the best human expert using the best currently available ATE. To this end, EMMA augments existing ATE with an expert system that captures the knowledge of design and maintenance experts.

EMMA is a 30-month effort split into two phases. The program is structured such that the maintenance concept for munitions is followed. Unlike aircraft maintenance with three levels of maintenance, munition maintenance only has two levels -- field and depot. Phase 1, September 1986 - July 1987, addressed the field-level maintenance of tactical munitions and ultimately resulted in two field-level expert system prototypes. Phase 2, August 1987 - April 1989, focuses on depot-level maintenance and will produce two depot-level expert system prototypes. Since depot-level diagnostic activities are more indepth and detailed than the field, this phase is expected to be more difficult and of greater complexity. This accounts for the greater time allotted to this phase. The prototypes from both phases are targeted for use by the maintenance technicians. Since EMMA is constrained by schedule and money, the number of tests developed under this effort is limited, yet sufficient, to demonstrate concept feasibility of using expert systems for munition maintenance.

EMMA draws on many different types of knowledge and information to perform the diagnosis of the faulty munition including maintenance rules or Technical Orders (TOs), maintenance technician practices (heuristics), Unit Under Test (UUT) design, existing test equipment capabilities, failure rates, and test costs. Figure 1 depicts how this knowledge is brought to bear on the problem of diagnosing the faulty munition. First, the symptoms are derived from the test equipment and technician observations. This information is supplied to the expert system via a sophisticated, user-friendly interface. The expert system then employs the knowledge stored in the knowledge bases and derives a repair strategy which is displayed to the technician using the EMMA computer screen.

EMMA is a dual contract effort performed by Raytheon Company, Missile Systems Division in Bedford Massachusetts, and Rockwell International Corporation, Autonetics Sensors and Aircraft Systems Division in Anaheim, California. Both contractors were required to develop a field and depot EMMA prototype resulting in a total of four prototypes (two for each contractor) and were allowed to select their candidate vehicle for the EMMA program within specified limits. Raytheon selected the AIM-7F Sparrow missile as "heir candidate munition. Rockwell chose the GBU-15 modular glide bomb.

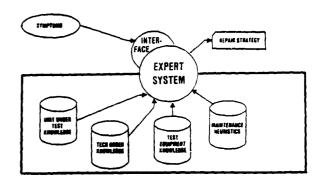


Figure 1. EMMA Expert System

THE AIM-7F FIELD-LEVEL EMMA PROTOTYPE

The Raytheon field-level (phase 1) EMMA prototype was designed to enhance the field-level maintenance of the AIM-7F missile by augmenting the missile's test set. All references to the word "EMMA" in this section refer to the Raytheon AIM-7F version of EMMA. The field-level test set for the AIM-7F is the AN/DSM-162 test set. EMMA is hosted on a Symbolics 3670 LISP machine running the expert system shell ART (Automated Reasoning Tool). ART provides a production language that is primarily rulebased. Consequently, EMMA was developed using the rule-based approach. The Symbolics computer is connected to the AM/DSM-162 test set via an RS-232 cable. Figure 2 illustrates the major components of the EMMA system and how they are interconnected.

The RS-232 cable allows EMMA to operate in three modes -- automatic, semi-automatic, and manual. The distinguishing characteristics of these modes is the level of automation EMMA is allowed during the diagnostic session. The automatic mode uses the RS-232 interface to allow EMMA to direct the diagnostic testing and resequencing of tests. EMMA automatically accepts data from the test set via the RS-232 cable, performs the fault isolation, and directs the test set to perform additional tests if required until the fault is detected or all tests pass. If a fault is detected during automatic operation, the user may switch to semi-automatic mode for closer control over the testing and the ability to query after each test segment.

The semi-automatic mode operates similarly to the automatic mode with one exception. This mode stops execution of EMMA at the completion of each unique test segment. This allows the technician to query EMMA recommendations using the explanation capability. Another advantage of the automatic modes (semi and full) is data integrity. Since EMMA passes the data between the test set and the Symbolics computer via the RS-232 cable, the data are more likely to remain valid as opposed to transferring data via a technician who could inadvertently introduce errors.

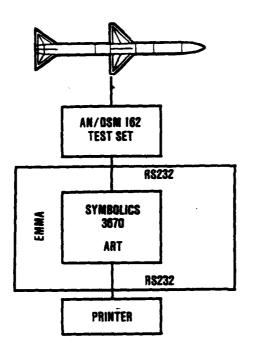


Figure 2. AIM-7F Field-level EMMA Prototype

The last mode is manual. This mode is provided in case an RS-232 connection is not possible. As the name implies, all interactions between the test set and the Symbolics computer must be performed manually by the technician. EMMA will direct the technician to perform the appropriate actions to the test set and wait for the response. The technician enters the responses from the test set into EMMA.

As with most expert systems, EMMA is able to explain its reasoning process to the user (technician) by explaining its fault detection and resequencing logic. In other words, EMMA explains a detected fault and why a certain test is being recommended. Two levels of explanation are available depending upon the experience of the technician. The technician may request an explanation during any phase of the diagnostic process. This allows the technician to query EMMA during a consultation which heightens the technician's understanding of what EMMA is doing while simultaneously providing the technician with a valuable training aid.

One of the most critical aspects of any software system is its user-friendliness. If the system is difficult to use and the user does not use it, it has failed. EMMA uses windows to relay information to the technician and accepts information via menus. Using a mouse, the technician is able to enter data quickly and accurately without having to learn cryptic commands. The majority of the data entered into EMMA by the technician is done using

the mouse; however, some keyboard input is required. Figure 3 shows the screen of a Symbolics computer running EMMA.

THE GBU-15 FIELD-LEVEL EMMA PROTOTYPE

The Rockwell field-level (phase 1) EMMA prototype was designed to enhance the field-level maintenance of the GBU-15 glide bomb by augmenting the field-level test set -- GJM-55. All references to the word "ENNA" in this section refer to the Rockwell GBU-15 version of EMMA unless stated otherwise. EMMA is hosted on an IBM PC/AT compatible computer running the expert system shell M.1. Although, the M.1 language is primarily rule-based, EMMA was developed using an object oriented approach. The rules of the knowledge base reference objects and object attributes. This EMMA did not support the capability for an automatic mode due to hardware limitations thereby leaving only the manual mode (i.e., no connecting cable). Figure 4 illustrates the major components of the EMMA system and how they are interconnected.

Uncertainty is addressed in this version of EMMA. When EMMA asks the technician for information, the technician may enter "unknown" as a response. EMMA will accommodate this response by adapting its reasoning process using uncertainty. Uncertainty is handled using a MYCIN-like representation (i.e., using a combining function that produces a quantitative measure of uncertainty, certainty factors, that is bound between 1 and -1 with 1 meaning true and -1 meaning false) (Hayes-Roth et al., 1983:93-96). When a recommendation is displayed to the technician, the certainty of the recommendation is also displayed to indicate the belief.

The GBU-15 EMMA also possesses explanation capabilities. The technician may ask EMMA for an explanation or help at any time. EMMA will respond with either an explanation of the reasoning process or information that will guide the technician through the consultation. The explanation capability can handle queries regarding the reason a certain conclusion was reached or why EMMA is asking for information. As with the AIM-7F EMMA, the GBU-15 EMMA has two levels of explanation to accommodate the needs of different technicians. The same training benefits exist in the GBU-15 EMMA as the AIM-7F EMMA.

EMMA exploits the use of pull-down menus and function keys on the computer to make it as user friendly as possible. The majority of technician interaction with EMMA is performed using the keyboard. The technician typically responds to EMMA questions and requests with short answers thereby reducing the probability of erroneous data being entered. Figure 5 shows the screen of the computer running EMMA.

3

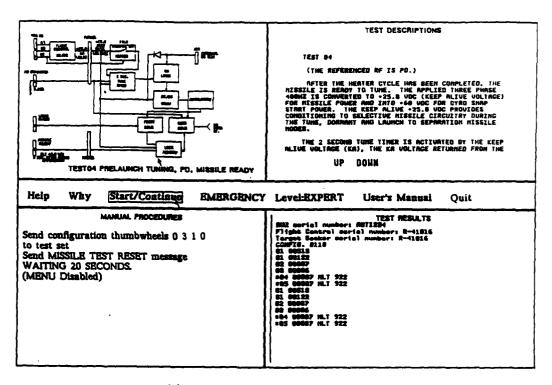
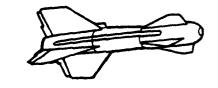


Figure 3. AIM-7F EMMA Screen


EVALUATION OF THE EMMA PROTOTYPES

Meaningful evaluation of expert systems has been an often discussed but seldom achieved topic within recent years. More often than not quantitative metrics are simply not available or meaningful as an evaluation measure. Since an expert system encapsulates the knowledge of a given expert in a given field, the effective evaluation of the expert system may be difficult at best. Validation must be used to justify the representation levels of expert systems (O'Keefe et al., 1987).

Validation is typically considered a part of evaluation, and evaluation is concerned with determining the comprehensive value of an expert system (O'Keefe et al., 1987). Validation should not be confused with verification. "Validation refers to building the right system (that is, substantiating that a system performs with an acceptable level of accuracy), whereas verification refers to building the system 'right' (that is, substantiating that a system correctly implements its specifications)" (O'Keefe et al., 1987). Validation and verification will be addressed in this paper as they apply to EMMA.

Verification of EMMA

A unique aspect of the verification of the EMMA program is that it uses DOD-STD-2167, the Defense System Software Development standard, to develop the expert system prototypes. This is one of the

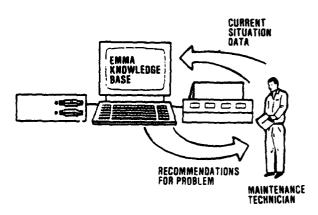


Figure 4. GBU-15 Field-level EMMA Prototype

EMMA CONFIG NO: 33 TEST NO: 0096 NOGO: INV/M6 A1

RECOMMENDATION:

CHECK THE INPUT CABLE OF THE UNIT UNDER TEST. IF OK, THEN R&R INV/CONV

JUSTIFICATION:

A RELATED TEST WITH A DIFFERENT INPUT CHANNEL PASSED AND THE PARAMÉTERS THAT FAILED WERE APPROXIMATELY ZERO; THUS THE INPUT CABLES OF THE UNIT UNDER TEST COULD BE THE CAUSE. A MORE LIKELY FAILURE IS THE INV/CONV BECAUSE THE +28 VDC ELECTRONICS IS COMPLEX AND COULD CAUSE ZERO FAILURES AS INDICATED

Figure 5. GBU-15 EMMA Screen

first attempts to apply this standard to the development of an expert system. The EMMA program has shown that an expert system can be developed using DOD-STD-2167 software development requirements. With some careful tailoring of some of the documents, this standard can be effectively used to document the program and provide the program manager valuable insight into the contractor's software development, testing, and evaluation efforts. The tailored documents were slightly altered to accommodate the iterative nature of expert system development.

Since verification must determine whether an expert system correctly implements its specifications, testing must occur in order to validate this requirement. Again, DOD-STD-2167 proved to be adequate for verification testing once Using the testing documents extended. called out in this standard, the correct implementations of the specifications for EMMA were verified. Two levels of testing occurred to accomplish this task. First, the knowledge engineer performed informal testing. This testing verified the integrity of the individual computer software units before the units were integrated into the system and tested as a system. Since expert system development is iterative in nature, informal testing essentially occurs throughout development. The knowledge engineer and the expert verify the expert system's behavior thereby identifying potential corrections and enhancements which were to be incorporated later by the engineer. Second, formal testing occurred. An independent team performed the formal testing by exercising EMMA using test plans and test descriptions generated using DOD-STD-2167. Both forms of testing identified problems which were later fixed. This generated a better expert system than without testing.

Validation of EMMA

The validation of EMMA is addressed in two areas: performance validation (i.e., how well EMMA performed), and the human factors aspect. Both areas are extremely important to the success of an expert system. The following paragraphs present the validation, methodology, and results of the two EMMA prototypes.

As with most expert systems, the ultimate measure of success is determined when the system is used by the end users (in this case the field-level munition technician). This is the approach taken with the EMMA program. Both contractors took their respective prototypes to Air Force bases in which their selected munition is used and a field-level maintenance capability exists. This allowed the prototypes to be evaluated in an actual field test environment.

After considering several alternatives, both contractors decided to use a toggle switch box to insert faults into a known good missile. This approach was necessary since it was feared that the maintenance squadrons in the field might not have a sufficient number of faulty munitions during the evaluation period. These faults were induced by the user by simply toggling one of the switches which in turn would disturb one or more signals within the munition. The faults were defined by the domain expert in conjunction with the maintenance expert (i.e., the experts select various representative tests from the test set) such that they would adequately exercise the various characteristics of the EMMA prototypes which included the resequencing logic, the explanation capability, and the fault isolation logic.

The AIM-7F EMMA Evaluation. Raytheon took their field level AIM-7F prototype to the 325th Equipment Maintenance Squadron (EMS) at Tyndall AFB, Florida for an evaluation period that began on 8 June 1987 and concluded on 12 June 1987.

The argument could be made that EMMA should accurately diagnose all the induced faults since the expert system and the faults were derived from the same source -the domain expert. In order to demonstrate the robustness of EMMA, an additional evaluation methodology was used. Two faulted missiles were saved by the EMS prior to the evaluation. These missiles had previously failed testing using the AN/DSM-162 test set. However, the fault data for these missiles were not released by the EMS personnel until after the EMMA evaluation. A third missile became available during the EMMA evaluation by failing a flight line test during prelaunch tuning. This missile was an excellent exercise for the EMMA prototype since it was not previously tested by the AN/DSM-162 test set. Its fault was unknown to everyone present at the evaluation. All three missiles (referred to as "mystery missiles" due to their unknown past) contained faults unknown to EMMA, the domain expert, and the maintenance technicians as well.

Four munition maintenance technicians from the EMS at Tyndall were used for the evaluation. Two technicians were classified as novice with little experience with the AN/DSM-162 test set and its associated operating procedures. The other two technicians were classified as experts with a substantial background in using the AN/DSM-162 test set. Two teams of two technicians were created consisting of one expert and one novice. One team (hereafter referred to as the EMMA team) received extensive training on the operation of EMMA. The other team (hereafter referred to as the non-EMMA team) was not trained on the EMMA system and served as a baseline for the evaluation.

Twelve faults were inserted into a known good missile using the toggle switch box. The faults were diagnosed by the EMMA team using the EMMA system and the non-EMMA team using just the AN/DSM-162 test set and the applicable TO. Performance of the two teams was based on the level of expertise of the operator, duration of test, and the ability to diagnose the fault accurately.

The results of this evaluation exercise were very promising. There were three significant results derived from the evaluation. First, the EMMA system operated by the EMMA team was able to consistently diagnose the fault quicker than the non-EMMA team using just the AN/DSM-162 and the technical orders regardless of the experience level of the EMMA operator. A time favings of 20% was seen with the novice using EMMA versus the expert using the AN/DSM-162. Second, novice technicians using the EMMA system

significantly outperformed (better fault diagnoses) novice technicians using just the AN/DSM-162 and performed 33% better than expert technicians using just the AN/DSM-162. Finally, EMMA's explanation capabilities significantly enhanced the abilities of the EMMA team to determine the reason behind each fault.

Once EMMA's abilities were exercised using the induced faults, EMMA was pitted against the mystery missiles again with excellent results. The EMMA team using EMMA correctly isolated the faults in all three missiles. Only after EMMA diagnosed the faults was the previous testing data on the two saved missiles released. EMMA's diagnosis was consistent with this data.

User acceptance of EMMA was outstanding. In fact, the technicians accepted EMMA's diagnosis of the missile from the flight line and said they would have, if allowed, sent the missile to the depot with no further testing using the AN/DSM-162 test set. This exemplifies EMMA's acceptance by the EMS maintenance personnel at Tyndall AFB. The technicians found the system to be very user-friendly. The mouse and the use of menus made the system easier to use than the bulky and cumbersome TOs. Also, the explanation capability proved to be an effective training mechanism.

The GBU-15 EMMA Evaluation. Rockwell evaluated their GBU-15 EMMA at the 4th Equipment Maintenance Squadron located at Seymour Johnson AFB, North Carolina during the period of 22 June through 29 June 1987.

Four maintenance technicians were used in the evaluation of the EMMA prototype. Two technicians were considered experts with several years of experience with the GBU-15 test environment. The remaining two technicians were considered novices with less than 6 months of experience. Another important distinction between the expert and novice technicians is the fact that the expert technicians owned personal computers and therefore were familiar with how computers operate, whereas the novice technicians did not own computers and had never used a computer before the EMMA evaluation. All four technicians were trained on how to use the EMMA system. After this brief training, the technicians felt very comfortable using the system.

Twenty-two simulated faults were induced into the known good munition with the intent of evaluating EMMA's capabilities to handle the following five areas: resolution of ambiguities between major shop replaceable units (SRU), referencing lower configuration testing to facilitate further component resolution, distinguishing between a cable failure and a circuit card assembly (CCA) gain failure, resolution of ambiguities between CCA's, and recognizing operator errors or test set problems. Six of the twenty-two induced faults were in the all-up-round (AUR) configuration (i.e., the test was performed

٤.

while the GBU-15 munition was completely intact). The remaining sixteen faults were in the control module stand alone configuration. EMMA was able to handle these five areas by analyzing additional test parameters as well as instituting and analyzing tests related to the failed test.

The diagnostic results of the induced faults showed substantial time savings in fault isolation and increased diagnostic capabilities. While the munition was in the control module stand alone configuration, a time savings of 40% was seen over conventional testing with the GJM-55. When the munition was in the AUR configuration, EMMA was able to provide up to 74% time savings. This is due to EMMA's capability to resolve failures while the munition is in the AUR configuration thereby saving the technician from having to performing testing in stand alone configuration.

The GJM-55 test set, in some situations, will recommend more than one suspected failure. This group of failures is called an ambiguity group since the test set cannot resolve any further than this group. EMMA was able to break up ambiguity EMMA also considered the possibility of a cable harness failure or the test set is failing. Based on these capabilities EMMA was able to significantly improve fault isolation as seen by diagnosing the 22 simulated faults. EMMA added a wiring harness check to 50% of all tests. EMMA deleted a CCA from an ambiguity group 40% of the time thereby reducing the number of CCA to be considered during testing. EMMA added a CCA to an ambiguity group 30% of the time to insure all potential CCA's are considered during the testing. This suggests that the test set did not always consider all potential CCA's. Finally, EMMA exchanged one suspect CCA in an ambiguity group for another CCA 10% of the time. The ability to manipulate the ambiguity group to benefit fault isolation was demonstrated by EMMA and proved to be an effective fault isolation technique. These results directly support the time savings previously mentioned.

The GBU-15 EMMA prototype also received accolades for its user friendliness. The technicians used EMMA with comfort and found several items to be particularly laudable. Among these items was the understandability of EMMA. The explanation capability provided easy to understand responses. Another aspect they found beneficial was the addition of the internal wiring harness check as one of the reasons for a fault since this check is relatively "inexpensive" to perform and can prevent unnecessary and potentially costly future testing. The training potential of EMMA was also mentioned as one of its major assets with the shortage of skilled techninans in the munition maintenance field.

EMMA PHASE 2

Both contractors are currently in phase 2 of the EMMA program. As previously mentioned, phase 2 focuses on the maintenance of tactical munitions at the depot level. More specifically, Raytheon is focusing on the depot-level maintenance of the AIM-7F. Rockwell is using the GBU-15 as its depot-level maintenance munition. Phase 2 is a natural extension of phase 1 since field-level faults are sent to the depot for repair. The prototypes developed during the phase 2 effort will be more detailed extensions of the phase 1 prototypes with one exception; the phase 2 prototypes will augment the depot-level test sets. The depot test set for the AIM-7F is the AN/DPM-22 test set. The GBU-15 depot-level test set is CATS (Calculator Automatic Test Station).

The depot-level prototypes will be implemented on the same computer hardware using the same expert system shells as the field-level prototypes. However, one difference between the field and depot prototypes for both contractors is the interface between the test set and the EMMA computer. The Raytheon interface will only support one-way communication from the test set to the EMMA computer due to test set limitations. This is different than the two-way communication of the field prototype. Rockwell is using a two-way communication interface between the test set and the EMMA computer whereas the field prototype interface was manual. prototypes will again incorporate an explanation capability for the technicians.

The evaluation of the depot prototypes will follow the same methodology used_in phase 1. Each prototype will be evaluated at the actual depot location by actual depot technicians. Once again, both evaluations are scheduled to last 5 days and are scheduled to occur in February 1989. The AIM-7F prototype will be evaluated at the Naval Aviation Depot (NAVAVNDEP) in Alameda, California. The GBU-15 prototype will be evaluated at Rockwell's Missile Systems Division in Atlanta, Georgia since an organic depot capability currently does not exist.

FOLLOW-ON PROGRAMS TO EMMA -- EMMA 2

A follow-on program will be initiated in early 1990 -- EMMA 2. The primary thrust of EMMA 2 is to develop an expert system that is capable of diagnosing a family of tactical munitions at the depot level. The current EMMA is limited to one munition per prototype. EMMA 2 will attempt to expand the current prototype capabilities to include multiple munitions from the same family (e.g., AIM family, GBU family, surface-to-air family, etc.). EMMA 2 will draw on the best features of all prototypes developed in the two phases of EMMA to derive a robust system. Some of the areas of interest that are being considered for EMMA 2 include: deep

7

reasoning techniques, speech, knowledge acquisition tools/aids, and generic knowledge base creation and maintenance.

OTHER ISSUES/OBSERVATIONS

Current Maintenance Philosophy

The current munition maintenance philosophy of the Tactical Air Command (TAC) for field maintenance is that of fault detection (go/nogo testing). Depending on the munition, if a fault does occur in the field, the suspected faulty section of the missile is sent to the depot for repair. One of the driving factors of this philosophy is the shortage of skilled maintenance technicians in field-level maintenance.

Since training these technicians is costly, TAC decided to eliminate an Air Force Specialty Code (AFSC) for munition maintenance. The deleted AFSC, 316XIL, was an electronics munition maintenance specialist. With this specialist no longer available, munition, not electronic munition, specialist are diagnosing today's munitions. This tends to create problems since the munition specialists are typically not adequately trained to diagnose the electronically-sophisticated munitions of today.

EMMA is capable of providing the necessary training and assistance to munition maintenance technicians. Using the explanation capabilities of EMMA, a technician can quickly become skilled at diagnosing the munition. Since EMMA's knowledge is gleaned from diagnostic and design experts. the novice munition technician using EMMA will effectively be performing as if he has an expert maintenance technician, the designer of the test set, the munition designer, and an instructor looking over his shoulder during the diagnosis. Another aspect of EMMA that should reduce overall maintenance costs is its ability to diagnose to a greater functional level than existing test sets used by today technicians. This should significantly reduce the costs associated with shipping faulty munitions to the depot, since more faults can be isolated at the field.

The munition depots are currently responsible for the majority of munition repairs. The field has very limited repair capabilities. This results in increased costs for overall maintenance of a munition system. The obvious cost is transportation of the munition between the field and the depot. However, the less tangible and potentially more significant cost is that of having the munition out of the inventory. This effectively reduces the number of missiles available for exercises or conflict.

Future Maintenance Systems

EMMA prototypes have proved the feasibility of applying AI to munition maintenance. In future weapon systems, maintenance expert systems should evolve with the weapon system instead of after the fact. This would allow the expert system to capture knowledge about the weapon as it is developed. Furthermore, the expert system should be incorporated directly into the ATE instead of augmenting the ATE with a separate computer system. This should make weapon systems of the future more supportable and maintainable by considering the maintenance aspect early in the weapon life cycle.

SUMMARY

Tactical munition maintenance of today has problems. EMMA is an attempt to relieve some of these problems by applying artificial intelligence/expert system technology. The results of EMMA indicate that this approach to munition maintenance has significant potential for future tactical maintenance systems.

Corporate knowledge retention is one of the premium benefits of EMMA. Since EMMA is updated easily and it never "forgets" knowledge, EMMA is an excellent tool for storing corporate knowledge as technicians come and go thereby making EMMA a better diagnostic entity than any one expert. Also, EMMA provides consistent, high quality diagnosis since it never has a "bad" day as contrasted with technicians. Rapid fault isolation and efficient manpower utilization are two more benefits of using EMMA. These benefits provided by EMMA will result in substantial mission payoffs. Weapon system downtime will be decreased as well as personnel requirements and training time. However, the most significant payoff is the increase in the reliability of munition maintenance procedures.

The technology has proven itself. The Government and contractors must now concentrate their efforts on getting it integrated into the next generation ATE.

BIBLIOGRAPHY

Hayes-Roth, Fredrick et al. Building
Expert Systems. Reading Massachusetts:
Addison-Wesley Publishing Company, 1983.

O'Keefe, Robert M. et al. "Validating Expert System Performance," IEEE Expert, 2: 81-89 (Winter 1987).

Rich, Elaine. Artificial Intelligence. New York: McGraw-Hill Book Company, 1983.

Waterman, Donald A. A Guide to Expert Systems. Reading Massachusetts: Addison-Wesley Publishing Company, 1986.

.

я